Epithelial polarity and differentiation in polycystic kidney disease.

نویسنده

  • E D Avner
چکیده

Renal cysts are central pathological features in a number of human congenital and acquired diseases, and produce significant morbidity and mortality. This review describes our laboratory's efforts to identify specific alterations in epithelial cell polarity and differentiation associated with renal tubular cyst formation and progressive enlargement. Studies in a murine model of human autosomal recessive polycystic kidney disease, the C57BL/6J cpk/cpk (CPK) mouse have demonstrated quantitative (increased activity) and qualitative (apical membrane distribution) alterations in Na+,K(+)-adenosine triphosphatase activity that mediate tubular cyst formation. Proximal tubular cyst formation in CPK kidneys is characterized by increased activity of a basolateral Na+,K(+)-ATPase, which drives organic anion secretion and consequent tubular fluid secretion. In contrast, collecting tubule cyst formation is characterized by increased apical membrane Na+,K(+)-ATPase expression, which may be a marker of the relatively undifferentiated phenotype of cyst lining cells. If such apically expressed enzyme is active, it may have pathogenic import in collecting tubule cyst formation and enlargement by mediating net basal to apical vectorial solute and fluid transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional polycystin-1 expression is developmentally regulated during epithelial morphogenesis in vitro: downregulation and loss of membrane localization during cystogenesis.

Polycystin-1 is a protein mutated in the majority of cases of autosomal dominant polycystic kidney disease (ADPKD), but its role in the molecular pathway of tubulogenesis and cystogenesis is not understood. To define the role of polycystin-1 during dynamic changes in formation of intercellular contacts and cell polarity accompanying epithelial morphogenesis, we have utilized a 3D MDCK in vitro ...

متن کامل

Autosomal Recessive Polycystic Kidney Disease Epithelial Cell Model Reveals Multiple Basolateral Epidermal Growth Factor Receptor Sorting Pathways

Sorting and maintenance of the EGF receptor on the basolateral surface of renal epithelial cells is perturbed in polycystic kidney disease and apical expression of receptors contributes to severity of disease. The goal of these studies was to understand the molecular basis for EGF receptor missorting using a well-established mouse model for the autosomal recessive form of the disease. We have d...

متن کامل

Kidney Injury Molecule-1 (Kim-1) expression in murine polycystic kidney disease

Kidney Injury Molecule-1 (Kim-1) is a type 1 membrane protein maximally upregulated in proliferating and de-differentiated tubular cells after renal ischemia. Since epithelial dedifferentiation, proliferation and local ischemia may play a role in the pathophysiology of autosomal dominant polycystic kidney disease (ADPKD), we investigated Kim-1 expression in a mouse model of this disease. In the...

متن کامل

Tight junction biology and kidney dysfunction.

The epithelial tight junction (TJ) has three major functions. As a "gate," it serves as a regulatory barrier separating and maintaining biological fluid compartments of different composition. As a "fence," it generates and maintains the apicobasal polarity of cells that form the confluent epithelium. Finally, the TJ proteins form a trafficking and signaling platform that regulates cell growth, ...

متن کامل

Polycystic kidney disease: cell division without a c(l)ue?

Polycystic kidneys are caused by an amazingly broad array of genetic mutations and manipulations. The ciliary hypothesis has evolved as the unifying concept of cystogenesis: cilia, bend by fluid flow, initiate a calcium influx that prevents cyst formation. The integrity of ciliary functions has been linked to the polycystic kidney disease gene products localizing to the cilium or the basal body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science. Supplement

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1993